

Interior angles of a parallelogram
Try this Drag the orange dots on each vertex
to reshape the parallelogram. Notice the behavior of the four interior angles.
In any polygon, the interior angles have certain properties. See
Interior angles of a polygon.
A parallelogram however has some additional properties.
1. Opposite angles are congruent
As you drag any vertex in the parallelogram above, note that the opposite angles are congruent (equal in measure).
Note for example that the angles ∠ABD and ∠ACD are always equal no matter what you do.
2. Consecutive angles are supplementary
If you start at any angle, and go around the parallelogram in either direction, each pair of angles you encounter always are supplementary  they add to 180°.
For example m∠ABD + m∠BDC =180°.
This is a result of the line BD being a
transversal of the parallel lines AB and CD.
Drag any orange dot in the figure above to reshape the parallelogram, and note that this is always true.
Other polygon topics
General
Types of polygon
Area of various polygon types
Perimeter of various polygon types
Angles associated with polygons
Named polygons
(C) 2011 Copyright Math Open Reference. All rights reserved

