# Incircle

The incircle of a regular polygon is the largest circle that will fit inside the polygon.

## Pages referring to 'incircle'

How to construct (draw) the incircle of a triangle with compass and straightedge or ruler. The three angle bisectors of any triangle always pass through its incenter. In this construction, we only use two, as this is sufficient to define the point where they intersect. We bisect the two angles and then draw a circle that just touches the triangles's sides. A Euclidean construction.
This page shows how to construct (draw) the incenter of a triangle with compass and straightedge or ruler. The incenter of a triangle is the point where all three angle bisectors always intersect, and is the center of the triangle's incircle. A Euclidean construction.
The incenter of a regular polygon is the point where the interior angle bisectors intersect
Definition of the incircle of any triangle or regular polygon.
The incircle of a regular polygon is defined along with its radius and formula for finding it.
Definition and properties of the incircle of a triangle
COMMON CORE

Math Open Reference now has a Common Core alignment.

See which resources are available on this site for each element of the Common Core standards.

Check it out